COE CST Third Annual Technical Meeting:

High-Temperature Pressure Sensors for Hypersonic Vehicles

David Mills Mark Sheplak

October 28 - 30, 2013

Overview

- Team Members
- Purpose of Task
- Research Methodology
- Results
- Next Steps
- Contact Information

Team Members

- University of Florida
 - Mark Sheplak Professor, Dept. of Mechanical and Aerospace Engineering
 - David Mills Graduate Research Assistant
 - Daniel Blood Graduate Research Assistant
- Florida State University
 - William Oates Asst. Professor, Dept. of Mechanical Engineering
 - Justin Collins Graduate Research Assistant

Purpose of Task

- Conventional instrumentation is unsuitable for continuous measurement in high-temperature environments such as:
 - High-speed reentry vehicles
 - Hypersonic transports
 - Gas Turbines
 - Scramjets
- Pressure sensors capable of high-temperature operation (>1000°C) will improve understanding of shock-wave/boundary layer interactions which directly influence critical vehicle characteristics such as lift, drag, and propulsion efficiency

Objectives

- Identify a suitable sensing method, material, and fabrication process for a high-bandwidth pressure sensor capable of continuous operation in temperatures in excess of 1000°C
- Fabricate a prototype sensor and create a robust high-temperature package
- Characterize the packaged sensor at room temperature and in high-temperature environments
- Implement the packaged sensor in a hypersonic or hot jet flow facility and/or a gas turbine

Research Methodology

- Sapphire fiber-optic sensors provide the following advantages over traditional silicon-based electrical sensors:
 - Electrically passive
 - Highly chemically inert
 - Immune to EMI
 - Non-conductive
- Requires development of the following processes:
 - Ultra-short pulse laser micromachining
 - Thermocompression bonding via spark plasma sintering (SPS) technology

Research Methodology

- Transduction Method: Fiber-optic lever
 - Intensity modulation via diaphragm deflection
 - Single send/receive fiber
- Optical Configuration
 - LED source with multimode fibers eliminates interferometric effects
 - Silica optical fiber components reduce back-end packaging costs
 - Reference photodiode eliminates noise from source

Process Flow

- Initial prototype sensor
 - Machine 4.5 mm diameter diaphragm from 50 µm thick sapphire
 - Deposit 200 nm platinum reflective layer with 20 nm titanium adhesion layer
 - Machine 4.5 mm recess in 3 mm ID alumina tube
 - Epoxy diaphragm inside recess
- Bonded prototype sensor
 - Machine 7 mm diameter hole in 1 mm thick sapphire substrate to form back cavity
 - Deposit 500 nm platinum bonding layer on back cavity substrate
 - Align and bond 50 µm sapphire diaphragm to back cavity substrate
 - Deposit 200 nm platinum reflective layer with 20 nm titanium adhesion layer in center

Fabrication Challenges

- Picosecond laser micromachining of sapphire
 - Thermal damage to surrounding material affects material properties and reliability
 - Understand relationship to machining parameters
- Spark plasma sintering (SPS) bonding of sapphire
 - Reduced temperatures and holding time compared to traditional vacuum hot press
 - Understand relationship between bond parameters and bond strength, thermal damage
- High-temperature packaging
 - Provide robust packaging solution while minimizing thermal stress effects

Prototype Fabrication & Packaging

- Developed laser machining processes for alumina and sapphire
- Poor definition of diaphragm shape and boundary condition due to application of epoxy
- Demonstrated method to determine optimal fiber distance from diaphragm
- Stainless steel package capable of 600°C operation

Bonded Sensor Design & Fab

- Larger diameter improved pressure sensitivity
 - Diaphragm size: 7 mm diameter, 50 µm thick
 - Resonant frequency: 19.6 kHz
 - Mechanical sensitivity: 0.55 nm/Pa
- SPS Bond better control of boundary
 - Heat/Cool Rate: 50°C/min
 - Temperature: 1200°C
 - Hold Time: 5 min
 - Diaphragm buckled during process

Post-bond Buckling Analysis

- Buckled diaphragm analyzed using scanning white light interferometer (SWLI)
- Measured center deflection of 90 µm corresponds to ~275 MPa residual compressive stress

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

Sensitivity Calibration

- Optimal distance between fiber and diaphragm determined based on deflection sensitivity
- Polyfit to linear region of normalized output gives a sensitivity of 0.62 mV/V/µm

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

High-Temperature Packaging

 Sapphire optical fiber packaged in FC connector on one end with bare zirconia ferrule on other end

- Zirconia ferrule epoxied into stainless steel housing in position determined by sensitivity calibration
- Stainless steel tubing used to protect sapphire optical fiber attached using high-temp ceramic epoxy

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

Results

- Measured sensor resonance of 22.1 kHz
- Theoretical sensitivity of 0.12 µV/V/Pa based on estimated sensitivity of buckled diaphragm
- Max continuous operating temperature of 900°C

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

Next Steps

- Complete SPS bond process development and characterization of bond interface
- Room-temperature plane wave tube characterization
 - Sensitivity
 - Frequency response
 - Linearity
- High-temperature characterization
 - Demonstrate survivability
 - Determine thermal drift
- Testing of the sensor in a high-temperature flow facility or gas turbine

Contact Information

- David Mills dm82@ufl.edu
- Mark Sheplak sheplak@ufl.edu

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

Backup Slides

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

Laser Micromachining

- "Long" Pulsewidths (>10 ps)
 - Industry standard
 - High reliability
 - Large heat affected zone (HAZ)
 - Micro-cracking and redeposit

Laser Micromachining

- Ultrashort Pulsewidths (<10 ps)
 - Direct solid-vapor transition
 - Reduced HAZ and micro-cracking
 - Lower fluence required
 - Deterministic material removal rate
 - Research tools
- Oxford Lasers J-355PS Laser Micromachining Workstation
 - Coherent Talisker 355 nm DPSS laser
 - Pulse length <10 15 ps
 - Pulse frequency up to 200 kHz
 - Power adjustable from ~0.05 4.5 W
 - XYZ stages & galvonometer

2.5 mm

Laser Micromachining Trends

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

Thermocompression Bonding

- High temperature bonding process
 - 70-90% of melting point (up to 1450°C for sapphire & Pt)
 - 1-10 MPa substrate pressure
 - Up to 24 hour hold time issues with survivability of patterned features
- Spark Plasma Sintering (SPS) process
 - Large current density (~1000 A/cm²) causes rapid resistive heating of substrates
 - Faster heating and cooling rates than hot press
 - Reduced temperature and holding time for similar performance

SPS Bonding Process

Bond Characterization

Tensile test

- Studs bonded to substrates using Hysol 9309.3NA adhesive
- Original SPS sample tensile strength: ~350 kPa
- Samples created using modified SPS process: >12 MPa
 - Adhesive joint failed before the bond interface
 - Need improved method for characterization

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

Bond Characterization

- Chevron test
 - Based on SEMI Standard MS5-1211
 - Platinum bonding layer patterned in chevron geometry on sapphire substrate
 - Blocks are attached at the free ends of the bonded specimen
 - Chevron tip creates a pre-crack to initiate failure
 - Max load related to fracture toughness, K_c , and critical wafer bond toughness, G_c

$$K_c \propto F_{max}$$

 $G_c \propto K_c^2$

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

Bond Characterization

- Chevron test
 - Based on SEMI Standard MS5-1211
 - Fracture toughness, $K_c = \frac{F_{max}}{B\sqrt{w}}Y_{min}$ where B = w = 10 mm, and Y_{min} is a geometry function determined using FEM simulations
 - Critical wafer bond toughness, $G_c = \frac{K_c^2}{\overline{E}}$ where $\overline{E} = \frac{E}{1 - \nu^2}$ for an isotropic material

Sensor Design

Mechanical Sensitivity

$$\frac{w_0}{P} = \frac{3}{16} \frac{a^4}{h^3} \frac{1 - \nu^2}{E}$$

Resonant Frequency

$$f_{res} = \frac{1}{2\pi} \sqrt{\frac{1}{C_{me}M_{me}}}$$
$$C_{me} = \frac{9a^2(1-\nu^2)}{16\pi Eh^3}$$
$$M_{me} = \frac{\rho\pi a^2 h}{5}$$

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

Residual Stress Estimate

 Pressure drop determined as a function of center deflection¹ (solved using Ritz method)

• Assumed deflection profile: $w(r) = w_0 \left(1 - \frac{r^2}{a^2}\right)^2$

$$\Delta P = \frac{4hw_0}{a^2} \left(\frac{4}{3} \frac{h^2}{a^2} \frac{E}{1 - \nu^2} + \sigma_0 + \frac{64}{105} \frac{w_0^2}{a^2} \frac{E}{1 - \nu^2} \right)$$

• Solve for σ_0 assuming no pressure drop ($\Delta P = 0$)

$$\sigma_0 = -\left(\frac{4}{3}\frac{h^2}{a^2} + \frac{64}{105}\frac{w_0^2}{a^2}\right)\frac{E}{1-\nu^2}$$

[1] W.K. Schomburg, Introduction to Microsystem Design, Springer, New York, NY, pp. 29-50, 2011.

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

Choosing a Transduction Scheme

- Factors Influencing Choice of Transducer Concept
 - <u>Specifications</u>: "what do you want to measure?"
 - <u>Physics related</u>: dynamic range, bandwidth, spatial resolution, single sensor versus arrays, fundamental vs. control, etc.
 - Environment: "where do you want to measure it?"
 - Wind tunnel, flight test, gas versus liquid, etc.
 - Temperature, pressure, humidity, dirt, rain, EMI, shocks, cavitation, fouling, etc.
 - <u>Packaging Requirements</u>: "where do you mount device?"
 - Application dependent: flush-mounting, single sensor versus arrays (packing density), etc.
 - Other Factors:
 - Budget, time-scale for test, risk tolerance, etc.

Towards High-Temperature

- Somewhat Uncharted Territory in MEMS
 - Silicon starts to plastically deform at 650 °C
 - Any circuit devices will be temperature limited (diodes, ICs, etc.)
- High-Temperature Limits Transducer Choices
 - Piezoresistive:
 - Leakage current and resistor noise increase with temperature
 - Limited to around 200 °C or must be cooled
 - Capacitive:
 - Low capacitance requires buffer amplifier close to sensor
 - High-temperature, low noise, high-input impedance amplifiers do not exist
- Optical is best if you can get it off optical bench
 - Detection electronics are remotely located
 - High temperature sapphire fibers and substrates exist

Oxsensis "Wavephire" Sensor

- Micro-machined sapphire pressure sensor with sapphire fiber-optic
 - Extrinsic Fabry Perot interferometer using at least two wavelengths
 - Diaphragm is micromachined using proprietary process
 - Limitations prevents further miniaturization to sub-millimeter size
- Specifications
 - Temperature range
 - -40 to 600°C (continuous)
 - -40 to 1000°C (research and development)
 - 100 dB dynamic range
 - Uncertainty <±10%

