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Team Members  
• University of Florida 

• Mark Sheplak – Professor, Dept. of 
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• David Mills – Graduate Research Assistant 
• Daniel Blood – Graduate Research Assistant 

• Florida State University 
• William Oates – Asst. Professor, Dept. of 

Mechanical Engineering 
• Justin Collins – Graduate Research Assistant 
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Purpose of Task 
• Conventional instrumentation is unsuitable for 

continuous measurement in high-temperature 
environments such as: 
• High-speed reentry vehicles 
• Hypersonic transports 
• Gas Turbines 
•  Scramjets 

• Pressure sensors capable of high-temperature 
operation (>1000°C) will improve understanding of 
shock-wave/boundary layer interactions which 
directly influence critical vehicle characteristics 
such as lift, drag, and propulsion efficiency 



COE CST Third Annual Technical Meeting (ATM3) 
October 28-30, 2013 

Objectives 
•  Identify a suitable sensing method, material, 

and fabrication process for a high-bandwidth 
pressure sensor capable of continuous 
operation in temperatures in excess of 1000°C 

• Fabricate a prototype sensor and create a 
robust high-temperature package 

• Characterize the packaged sensor at room 
temperature and in high-temperature 
environments 

•  Implement the packaged sensor in a hypersonic 
or hot jet flow facility and/or a gas turbine 
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Research Methodology 
• Sapphire fiber-optic sensors provide the following 

advantages over traditional silicon-based 
electrical sensors: 
•  Electrically passive 
• Highly chemically inert 
•  Immune to EMI 
• Non-conductive 

• Requires development of the following processes: 
• Ultra-short pulse laser micromachining 
•  Thermocompression bonding via spark plasma 

sintering (SPS) technology 
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Research Methodology 
• Transduction Method: Fiber-optic lever 

•  Intensity modulation  
 via diaphragm deflection 

•  Single send/receive fiber 

• Optical Configuration 
•  LED source with multimode fibers 

eliminates interferometric effects 
•  Silica optical fiber components reduce 

back-end packaging costs 
•  Reference photodiode eliminates noise 

from source 
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Alumina 
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Process Flow 
•  Initial prototype sensor 

–  Machine 4.5 mm diameter diaphragm from 50 
µm thick sapphire 

–  Deposit 200 nm platinum reflective layer with 
20 nm titanium adhesion layer 

–  Machine 4.5 mm recess in 3 mm ID alumina 
tube 

–  Epoxy diaphragm inside recess 

•  Bonded prototype sensor 
–  Machine 7 mm diameter hole in 1 mm thick 

sapphire substrate to form back cavity 
–  Deposit 500 nm platinum bonding layer on 

back cavity substrate 
–  Align and bond 50 µm sapphire diaphragm to 

back cavity substrate 
–  Deposit 200 nm platinum reflective layer with 

20 nm titanium adhesion layer in center 
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Fabrication Challenges 
• Picosecond laser micromachining of sapphire 

– Thermal damage to surrounding material affects material 
properties and reliability 

– Understand relationship to machining parameters 
• Spark plasma sintering (SPS) bonding of sapphire 

– Reduced temperatures and holding time compared to 
traditional vacuum hot press 

– Understand relationship between bond parameters and bond 
strength, thermal damage 

• High-temperature packaging 
− Provide robust packaging solution while minimizing thermal 

stress effects 
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Prototype Fabrication & Packaging 
•  Developed laser machining processes 

for alumina and sapphire 

•  Poor definition of diaphragm shape 
and boundary condition due to 
application of epoxy 

•  Demonstrated method to determine 
optimal fiber distance from diaphragm 

•  Stainless steel package capable of 
600°C operation 
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Bonded Sensor Design & Fab 
• Larger diameter – improved pressure sensitivity 

• Diaphragm  size: 7 mm diameter, 50 µm thick 
• Resonant frequency: 19.6 kHz 
• Mechanical sensitivity: 0.55 nm/Pa 

•   SPS Bond – better control of boundary 
• Heat/Cool Rate: 50°C/min 
•  Temperature: 1200°C 
• Hold Time: 5 min 
• Diaphragm buckled during process 
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Post-bond Buckling Analysis 
•  Buckled diaphragm analyzed using scanning white light 

interferometer (SWLI) 
• Measured center deflection of 90 µm corresponds to 

~275 MPa residual compressive stress 
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Sensitivity Calibration 
• Optimal distance between fiber and diaphragm 

determined based on deflection sensitivity 
•  Polyfit to linear region of normalized output gives a 

sensitivity of 0.62 mV/V/µm 
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High-Temperature Packaging 
• Sapphire optical fiber packaged in FC connector on 

one end with bare zirconia ferrule on other end 

• Zirconia ferrule epoxied into stainless steel housing 
in position determined by sensitivity calibration 

• Stainless steel tubing used to protect sapphire optical 
fiber attached using high-temp ceramic epoxy 
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Results 
• Measured sensor resonance of 22.1 kHz 
• Theoretical sensitivity of 0.12 µV/V/Pa based on 

estimated sensitivity of buckled diaphragm 
• Max continuous operating temperature of 900°C 
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Next Steps 
• Complete SPS bond process development and 

characterization of bond interface 
• Room-temperature plane wave tube characterization 

• Sensitivity 
• Frequency response 
• Linearity 

• High-temperature characterization 
• Demonstrate survivability 
• Determine thermal drift 

• Testing of the sensor in a high-temperature flow 
facility or gas turbine 
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Contact Information 
• David Mills – dm82@ufl.edu 
• Mark Sheplak – sheplak@ufl.edu 
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Backup Slides 
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•  “Long” Pulsewidths (>10 ps) 
–  Industry standard 
– High reliability 
– Large heat affected zone (HAZ) 
– Micro-cracking and redeposit 
 

Laser Micromachining 
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Ablation 
Plume

Redeposit

HAZ

•  Ultrashort Pulsewidths (<10 ps) 
– Direct solid-vapor transition 
– Reduced HAZ and micro-cracking 
– Lower fluence required 
– Deterministic material removal rate 
– Research tools 
 

Laser Micromachining 

•  Oxford Lasers J-355PS Laser 
Micromachining Workstation 
– Coherent Talisker 355 nm DPSS laser 
– Pulse length <10 – 15 ps 
– Pulse frequency up to 200 kHz 
– Power adjustable from ~0.05 – 4.5 W 
– XYZ stages & galvonometer 
 

2.5 mm 
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Laser Micromachining Trends 
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Thermocompression Bonding 
• High temperature bonding process 

•  70-90% of melting point (up to 1450°C for sapphire & Pt) 
•  1-10 MPa substrate pressure 
•  Up to 24 hour hold time – issues with survivability of 

patterned features 
• Spark Plasma Sintering (SPS) process 

•  Large current density (~1000 A/cm2) causes rapid resistive 
heating of substrates 

•  Faster heating and cooling rates than hot press 
•  Reduced temperature and holding time for similar 

performance 
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• Original Process 
– Bond parameters 

•  Max temp: 800°C 
•  Heating rate: 25°C/min 
•  Hold time: 5 minutes 

– Low bond strength 
– Substrate cracking issues 

• Modified Process 
– Reduced pressure load via spacer and 

compressible graphite foil 
– Bond parameters 

•  Max temp: 1200°C 
•  Heating rate: 50°C/min 
•  Hold time: 5 minutes 

–  Improved bond strength via higher 
temps 

– No visible cracks observed 
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Bond Characterization 
•  Tensile test 

– Studs bonded to substrates using Hysol 9309.3NA adhesive  
– Original SPS sample tensile strength: ~350 kPa 
– Samples created using modified SPS process: >12 MPa 

– Adhesive joint failed before the bond interface 
– Need improved method for characterization 
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Bond Characterization 
•  Chevron test 

– Based on SEMI Standard MS5-1211 
– Platinum bonding layer patterned in chevron 

geometry on sapphire substrate 
– Blocks are attached at the free ends of the 

bonded specimen 
– Chevron tip creates a pre-crack to initiate failure 
– Max load related to fracture toughness,     , and 

critical wafer bond toughness, 

Force 

Force 
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Bond Characterization 
•  Chevron test 

•  Based on SEMI Standard MS5-1211 
•  Fracture toughness, 
 where                     , and       is a 
geometry function determined using 
FEM simulations 

•  Critical wafer bond toughness, 
 where                for an isotropic material 

  

Force 

Force 
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Sensor Design 
• Mechanical Sensitivity 

•  Resonant Frequency 
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Residual Stress Estimate 
•  Pressure drop determined as a function of center 

deflection1 (solved using Ritz method) 
•  Assumed deflection profile: 

 

•  Solve for    assuming no pressure drop (ΔP = 0) 

[1]	  	  W.K.	  Schomburg,	  Introduc)on	  to	  Microsystem	  Design,	  Springer,	  New	  York,	  NY,	  pp.	  29-‐50,	  2011. 
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•  Factors Influencing Choice of Transducer Concept 
•  Specifications: “what do you want to measure?”   

•  Physics related:  dynamic range, bandwidth, spatial 
resolution, single sensor versus arrays, fundamental vs. 
control, etc. 

•  Environment: “where do you want to measure it?” 
•  Wind tunnel, flight test, gas versus liquid, etc. 

•  Temperature, pressure, humidity, dirt, rain, EMI, 
shocks, cavitation, fouling, etc. 

•  Packaging Requirements: “where do you mount device?” 
•  Application dependent: flush-mounting, single sensor 

versus arrays (packing density), etc. 

•  Other Factors: 
•  Budget, time-scale for test, risk tolerance, etc. 

Choosing a Transduction Scheme 
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Opto-mechanical Transduction 

2d 
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•  Somewhat Uncharted Territory in MEMS 
•  Silicon starts to plastically deform at 650 °C 
•  Any circuit devices will be temperature limited (diodes, ICs, 

etc.) 
•  High-Temperature Limits Transducer Choices 

•  Piezoresistive:  
•  Leakage current and resistor noise increase with temperature 
•  Limited to around 200 °C or must be cooled 

•  Capacitive:  
•  Low capacitance requires buffer amplifier close to sensor 

•  High-temperature, low noise, high-input impedance amplifiers do 
not exist 

•  Optical is best if you can get it off optical bench 
•  Detection electronics are remotely located 
•  High temperature sapphire fibers and substrates exist 

Towards High-Temperature 
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Oxsensis “Wavephire” Sensor 
•  Micro-machined sapphire pressure sensor with sapphire fiber-optic 

•  Extrinsic Fabry Perot interferometer using at least two wavelengths 
•  Diaphragm is micromachined using proprietary process 

•  Limitations prevents further miniaturization to sub-millimeter size 

•  Specifications 
•  Temperature range 

•  -40  to  600°C (continuous) 
•  -40 to 1000°C (research and development) 

•  100 dB dynamic range 
•  Uncertainty <±10% 


